Naturwissenschaften
Naturwissenschaften: Physik und Umwelt
Sonnenenergie - Fotovoltaik
end
Solarenergie Fotovoltaik
Solarenergie Sonnenenergie speichern
Solarenergie Mit Licht zu sauberem Wasser
Solarenergie Fotovoltaik
Solarenergie Speicherung Grafik
Weitere Informationen
Themen Naturwissenschaften Geografie-Erdkunde Klima
vorangehende Seiteend
Solarenergie: Sonnenenergie chemisch effizient speichern
Erstmalig wird konzentrierte Sonnenenergie als Hochtemperatur-Prozess genutzt, um im Pilotmassstab einen metallischen Brennstoff herzustellen. In einem von der EU geförderten Forschungsprojekt haben das Paul Scherrer Institut (PSI) und die ETH Zürich, zusammen mit andern Forschungsinstituten und der Industrie, jüngst einen wichtigen Meilenstein realisiert.

Eine 300-Kilowatt-Pilotanlage zur solaren Herstellung von Zink oberhalb von 1200 Grad Celsius wurde kürzlich in Israel erfolgreich in Betrieb genommen.

Besonders attraktive Anwendungen des Zinks sind die Nutzung seines Energieinhalts zur elektrischen Stromerzeugung in Zink-Luft-Batterien sowie zur Produktion von Wasserstoff durch seine Reaktion mit Wasserdampf. In beiden Fällen entsteht wieder Zinkoxid, das erneut im Solarreaktor zu Zink reduziert werden kann. Bei einer derartigen Verwendung des Zinks oder des Wasserstoffs als «solarer Brennstoff« lässt sich die Sonnenenergie nach Wunsch zu beliebigen Zeiten und an beliebigen Orten nutzen.

Die solare Reaktortechnologie ist eine Schweizer Entwicklung des Paul Scherrer Instituts (PSI) und der ETH Zürich und bildet das Herzstück der Anlage. Zink entsteht bei etwa 1200 Grad Celsius aus Zinkoxid unter Beimischung von Holzkohle, wobei nur ein Fünftel der normalerweise bei der Zinkherstellung eingesetzten Kohle- bzw. Koksmenge benötigt wird. Die erforderliche Prozessenergie wird über ein Spiegelsystem bereitgestellt, das die einfallende Sonnenenergie konzentriert und auf die öffnung des Solarreaktors lenkt, in dem die thermochemische Umsetzung abläuft.

Das Hauptprodukt Zink verlässt den Reaktionsraum gasförmig und wird in einem speziell für diesen Zweck entwickelten Abgassystem zu Zinkstaub kondensiert und abgeschieden.

«Nach umfangreichen Vorversuchen mit Reaktor-Prototypen am Solarofen des PSI konnten wir, zusammen mit unseren Projektpartnern aus Schweden, Frankreich und Israel, eine 300-Kilowatt-Pilotanlage am Weizmann Institute of Science (WIS) in Rehovot bei Tel Aviv in Betrieb nehmen», erklärt PSI-Mitarbeiter Christian Wieckert, wissenschaftlicher Koordinator des Projekts.

Bis zu 60 Prozent Wirkungsgrad als Ziel

In ersten Versuchen wurden letzthin etwa 30 Prozent der einfallenden Sonnenenergie für die chemische Umsetzung genutzt und damit 45 Kilogramm Zink pro Stunde produziert, womit die projektierten Ziele bezüglich Durchsatz und Effizienz bereits weitestgehend erreicht wurden. Noch höhere Wirkungsgrade werden bei den für diesen Sommer geplanten systematischen Testreihen erwartet. Grössere industrielle Anlagen, für die das laufende Projekt die Grundlagen liefern soll, dürften eine Effizienz von 50 bis 60 Prozent erreichen. Damit eröffnet der solarchemische Prozess einen effizienten thermochemischen Weg für die Speicherung und den Transport von Sonnenenergie in Form eines solaren Brennstoffes.

Die Forschung auf dem Gebiet der Hochtemperatur-Solarchemie an der ETH und am PSI verbindet grundlegende physikalische und chemische Studien mit der verfahrenstechnischen Entwicklung von solarchemischen Reaktoren. Langfristiges Ziel ist die Entwicklung von Brennstoffen, die mit einer sauberen, universellen und nachhaltigen Energiequelle hergestellt werden. «Solare Brennstoffe können für eine umweltfreundliche Energieversorgung genutzt werden und damit einen Beitrag zur Lösung der Klimaproblematik leisten«, sagt Aldo Steinfeld, Professor vom Institut für Energietechnik an der ETH Zürich und Leiter des Labors für Solartechnik am PSI.

nach oben

Quelle: Text Paul Scherrer Institut (PSI) und Institut für Energietechnik, ETH Zürich, Juni 2005

nach oben

Weitere Informationen
Paul Scherrer InstitutSchülerlabor

Links
Externe Links

Paul Scherrer Institut
Forschung am PSI: Synchrotron

end
vorangehende Seite